Ch. 5 Cell Communication Section 5.6

Do bacteria communicate? Bonnie Bassler on How Bacteria "Talk"

Cell Signaling

Animal cells communicate by:

- Direct contact (gap junctions)
- Secreting local regulators (growth ^{(a) Cell J} factors, neurotransmitters)
- Long distance (hormones)

(b) Cell-cell recognition

3 Stages of Cell Signaling:

- 1. <u>Reception</u>: Detection of a signal molecule (ligand) coming from outside the cell
- 2. <u>Transduction</u>: Convert signal to a form that can bring about a cellular response
- **3.** <u>**Response</u>**: Specific cellular response to the signal molecule</u>

Reception

Transduction

Response

1. Reception

- Binding between signal molecule (ligand) + receptor is highly specific.
- Types of Receptors:
 - a) <u>Plasma membrane receptor</u>
 - water-soluble ligands
 - b) Intracellular receptors (cytoplasm, nucleus)
 - small or hydrophobic ligand molecules
 - Eg. testosterone or nitric oxide (NO)
- Ligand binds to receptor protein → protein changes
 SHAPE → initiates transduction signal

Plasma Membrane Receptors:

G-Protein Coupled Receptor (GPCR)	Tyrosine Kinase	Ligand-Gated Ion Channels

G-Protein-Coupled Receptor

Signaling molecule binding site

© 2011 Pearson Education, Inc.

G protein-coupled receptor

G-Protein-Coupled Receptor

Plasma Membrane Receptors

G-Protein Coupled Receptor (GPCR)	Tyrosine Kinase	Ligand-Gated Ion Channels
7 transmembrane segments in membrane		
G protein + GTP activates enzyme → cell response		

Receptor Tyrosine Kinase

© 2011 Pearson Education, Inc.

Plasma Membrane Receptors

G-Protein Coupled Receptor (GPCR)	Tyrosine Kinase	Ligand-Gated Ion Channels
	Attaches (P) to tyrosine	
	Activate <u>multiple</u> cellular responses at once	

Ligand-Gated Ion Channel

Plasma Membrane Receptors

G-Protein Coupled Receptor (GPCR)	Tyrosine Kinase	Ligand-Gated Ion Channels
		Signal on receptor changes shape
		Regulate flow of specific ions (Ca ²⁺ , Na ⁺)

2. Transduction

 <u>Cascades</u> of molecular interactions relay signals from receptors → target molecules

 Protein kinase: enzyme that phosphorylates and activates proteins at next level

<u>Phosphorylation cascade</u>: enhance and amplify signal

Second Messengers

- Small, non-protein molecules/ions that can relay signal inside cell
 - Eg. cyclic AMP (cAMP), calcium ions (Ca²⁺), inositol triphosphate (IP₃)

CAMP

- cAMP = cyclic adenosine monophosphate
- GPCR \rightarrow adenylyl cyclase (convert ATP \rightarrow cAMP) \rightarrow activate protein kinase A

3. Response

- Regulate protein synthesis by turning on/off genes in nucleus (gene expression)
- Regulate activity of proteins in cytoplasm

An Example of Cell Communication

http://learn.genetics.utah.edu/content/begin/cells/cellc om/

Signal Transduction Pathway Problems/Defects:

Examples:

- Diabetes
- Cholera
- Autoimmune disease
- Cancer
- Neurotoxins, poisons, pesticides
- Drugs (anesthetics, antihistamines, blood pressure meds)

 Disease acquired by drinking contaminated water (w/human feces)

 Bacteria (Vibrio cholerae) colonizes lining of small intestine and produces toxin

Cholera

- Toxin modifies G-protein involved in regulating salt & water secretion
- G protein stuck in active form
 → intestinal cells secrete salts, water
- Infected person develops profuse diarrhea and could die from loss of water and salts

Viagra

- Used as treatment for erectile dysfunction
- Inhibits hydrolysis of cGMP \rightarrow GMP
- Prolongs signal to relax smooth muscle in artery walls; increase blood flow to penis

Viagra inhibits cGMP breakdown

Apoptosis = cell suicide

- Cell is dismantled and digested
- Triggered by signals that activate cascade of "suicide" proteins (caspase)
- Why?
 - Protect neighboring cells from damage
 - Animal development & maintenance
- May be involved in some diseases (Parkinson's, Alzheimer's)

Apoptosis of a human white blood cell

Left: Normal WBC Right: WBC undergoing apoptosis – shrinking and forming lobes ("blebs")

Effect of apoptosis during paw development in the mouse

