CH 5 - Membrane Structure and Function

what You Must Know:

- Why membranes are selectively permeable.
- The role of phospholipids, proteins, and carbohydrates in membranes.
- How water will move if a cell is placed in an isotonic, hypertonic, or hypotonic solution and be able to predict the effect of different environments on the organism.
- How electrochemical gradients and proton gradients are formed and function in cells.

Cell membrane

 A. Plasma membrane is <u>selectively permeable</u>
 Allows some substances to cross more easily than others

B. Fluid Mosaic Model

Fluid: membrane held together by weak interactions

• Mosaic: phospholipids, proteins, carbs

Early membrane model

- (1935) Davson/Danielli Sandwich model
- phospholipid bilayer between 2 protein layers
- <u>Problems</u>: varying chemical composition of membrane, hydrophobic protein parts

The freeze-fracture method: revealed the structure of membrane's interior

TECHNIQUE

Fluid mosaic model:

Phospholipid – bilayer

Hydrophobic regions of protein

Hydrophilic regions of protein

Glycoprotein { } Carbohydrate

Phospholipid Cholesterol

Microfilaments of cytoskeleton

Peripheral proteins protein

CYTOPLASMIC SIDE OF MEMBRANE

EXTRA-

SIDE OF

CELLULAR

MEMBRANE

Glycolipid

© 2016 Pearson Education, Inc.

Phospholipids

Bilayer

- <u>Amphipathic</u> = hydrophilic head, hydrophobic tail
- Hydrophobic barrier: keeps hydrophilic molecules out

Membrane fluidity

 Low temps: phospholipids w/unsaturated tails (kinks prevent close packing)

Cholesterol resists changes by:
 Limit fluidity at high temps
 Hinder close packing at low temps

(a) Unsaturated versus saturated hydrocarbon tails.

Unsaturated tails prevent packing.

Saturated tails pack together.

(b) Cholesterol reduces membrane fluidity at moderate temperatures, but at low temperatures hinders solidification.

 Adaptations: bacteria in hot springs (unusual lipids); winter wheat (
 unsaturated phospholipids)

(a) Unsaturated versus saturated hydrocarbon tails.

Unsaturated tails prevent packing.

Saturated tails pack together.

(b) Cholesterol reduces membrane fluidity at moderate temperatures, but at low temperatures hinders solidification.

© 2016 Pearson Education, Inc.

Membrane proteins

Integral Proteins

Peripheral Proteins

- Embedded in membrane
- Determined by freeze fracture
- Transmembrane with hydrophilic heads/tails and hydrophobic middles

- Extracellular or cytoplasmic sides of membrane
- NOT embedded
- Held in place by the cytoskeleton or ECM
- Provides stronger framework

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Integral & Peripheral proteins

Transmembrane protein structure

Some functions of membrane proteins

(a) Transport

(b) Enzymatic activity

(e) Intercellular joining

(f) Attachment to the cytoskeleton and extracellular matrix (ECM)

Carbohydrates

- Function: cell-cell recognition; developing organisms
- Glycolipids, glycoproteins
- Eg. blood transfusions are type-specific / organ transplants ightarrow rejection

Synthesis and sidedness of membranes

Selective permeability

- <u>Small nonpolar molecules</u> cross easily: hydrocarbons, hydrophobic molecules, CO₂, O₂, N₂
- Polar uncharged molecules, including H2O pass in small amounts
- Hydrophobic core *prevents* passage of <u>ions</u>, <u>large</u> <u>polar molecules</u> – movement through embedded channel and transport proteins

Passive transport

- NO ENERGY (ATP) needed!
- Diffusion down concentration gradient

(high \rightarrow low concentration)

Eg. hydrocarbons, CO₂, O₂, H₂O

(b) Diffusion of two solutes

© 2016 Pearson Education, Inc.

© 2016 Pearson Education, Inc.

External environments can be <u>hypotonic</u>, <u>isotonic</u> or <u>hypertonic</u> to internal environments of cell

© 2016 Pearson Education, Inc

Understanding Water Potential

Water potential

Water potential (ψ): H₂O moves from high $\psi \rightarrow low \psi$ potential

Water potential equation:

 $\psi = \psi_{\rm S} + \psi_{\rm P}$

- Water potential (ψ) = free energy of water
- Solute potential (ψ_s) = solute concentration (osmotic potential)
- Pressure potential (ψ_P) = physical pressure on solution; *turgor pressure (plants)*
 - Pure water: $\psi_{\mathbf{P}} = 0$ MPa
 - Plant cells: ψ_P = 1 MPa

Calculating solute potential (ψ_s)

$\psi_{\rm S}$ = -iCRT

- i = ionization constant (# particles made in water)
- C = molar concentration
- R = pressure constant (0.0831 liter bars/mole-K)
- T = temperature in K (273 + 0 C)

 The addition of solute to water *lowers* the solute potential (more negative) and therefore *decreases* the water potential.

where will WATER move?

From an area of:

- higher $\psi \rightarrow$ lower ψ (more negative ψ)
- low solute concentration \rightarrow high solute concentration
- high pressure \rightarrow low pressure

Figure 11.3

- 1. Which chamber has a lower water potential?
- 2. Which chamber has a lower solute potential?
- 3. In which direction will osmosis occur?
- 4. If one chamber has a Ψ of -2000 kPa, and the other -1000 kPa, which is the chamber that has the higher Ψ ?

Figure 36-3 Biological Science, 2/e © 2005 Pearson Prentice Hall, Inc.

Low water potential Atmosphere ψ : –95.2 MPa (Changes with humidity; usually very low)

Leaf ^ψ: −0.8 MPa (Depends on transpiration rate; low when stomata are open)

Root ψ : -0.6 MPa (Medium-high) Soil ψ : -0.3 MPa (High if moist; low if extremely dry) High water potential

Sample problem:

Calculate the solute potential of a 0.1M NaCl solution at 25°C.

2. If the concentration of NaCl inside the plant cell is 0.15M, which way will the water diffuse if the cell is placed in the 0.1M NaCl solution?

Facilitated diffusion

Transport proteins (channel or carrier proteins) help

hydrophilic substances cross

- o Two ways:
 - Provide hydrophilic channel
 - Loosely bind/carry molecule across
- Eg. ions, polar molecules (H₂O, glucose)

<u>Aquaporin</u>: channel protein that allows passage of H_2O

Glucose Transport Protein – Carrier Protein

Active transport

Requires ENERGY (ATP)

 Proteins transport substances against concentration gradient (low → high conc.)

•Eg. Na⁺/K⁺ pump, proton pump

Active transport © 2011 Pearson Education. Inc

Electrogenic Pumps: generate voltage across membrane

Na⁺/K⁺ Pump

- Pump Na⁺ out, K⁺ into cell
- Nerve transmission

Proton Pump

- Push protons (H⁺) across membrane
- Eg. mitochondria (ATP production)

<u>Cotransport</u>: membrane protein enables "downhill" diffusion of one solute to drive "uphill" transport of other

Eg. sucrose-H⁺ cotransporter (sugar-loading in plants)

© 2016 Pearson Education, Inc

Passive vs. Active Transport

- Little or no Energy
- High → low
 concentrations
- DOWN the concentration gradient
- eg. diffusion, osmosis, facilitated diffusion (w/transport protein)

- Requires Energy (ATP)
- Low → high concentrations
- AGAINST the concentration gradient
- eg. pumps, exo/endocytosis

Passive transport

Active transport

© 2016 Pearson Education, Inc.

Osmoregulation

- Control solute & water balance
- Contractile vacuole: "bilge pump" forces out fresh water as it enters by osmosis
- Eg. paramecium caudatum freshwater protist

© 2016 Pearson Education, Inc.

Bulk transport

Transport of proteins, polysaccharides, large molecules

Endocytosis: take in macromolecules and particulate matter, form new vesicles from plasma membrane

Exocytosis: vesicles fuse with plasma membrane, secrete contents out of cell

Types of Endocytosis

Phagocytosis: "cellular eating" - solids

Pinocytosis: "cellular drinking" - fluids

Phagocytosis

FLUID

Pinocytosis

Receptor-Mediated Endocytosis

Receptor-Mediated Endocytosis: Ligands bind to specific receptors on cell surface

© 2016 Pearson Education. Inc.

CYTOPLASM

Food

vacuole

